ame:	:				Date:	
	Math 8	8 Honours Assign	ment 1.4 Prim	ne Factorization and Num	ber of Factors (Part 1)	
1. Multiply the following without using a calculator:						
a)	12×16=	-	b) $15 \times 20 =$		c) $9 \times 16 \times 2 =$	
d)	27×4=		e) 14×21=		f) 8×12×6=	
 g)	15×12×35 =		h) 18×14×5	=	i) 15×24×3=	
2. a)	Find the Prime	Factorization for	each of the fo d) 845	llowing numbers without	using a calculator: g) 864	
b)			e) 3844		h) 5040	
c)	20124		f)12056		 i) 454,597	

_

3. Indicate which of the following are perfect squares: a) 24, 36, 225, 169, 189, 224 b) 16, 27, 72, 125, 289, 324 c) -25, 900, 1024, 144, 54, -64 4. Indicate which of the following products will be perfect squares: a) $2^4 \times 3^2 \times 5^2 =$ b) $2^2 \times 3^4 \times 7^2 =$ c) $3^4 \times 3^3 \times 75 =$ d) $27 \times 24 \times 8 =$ e) $16 \times 36 \times 2 =$ f) $3 \times 12 \times 8 =$ g) $2 \times 2^2 \times 2^3 =$ h) $5 \times 5^4 \times 5^6 =$ i) $2^3 \times 3^4 \times 12^3 =$ 5. Given that N is a natural number find the lowest value of N such that the square root will become a positive integer: b) $4^2 7^2 5^2 N$ a) $2^3 5^1 7^2 N$ c) $3^4 5^3 12N$ f) $664 \times (N-1)$ d) 38412×*N* e) 13992×*N*

6. Given that N is an integer greater than one and $N \neq 0$, what is the lowest value of N so that "K" is a perfect square (*Given* $K \neq 0$)

a)
$$K = N \times 3^3 \times 21$$
 d) $K = (N-1) \times 7^7 \times 121$

b)
$$K = N \times 3^3 \times 5^5$$
 e) $K = N^2 + N$

c) $K = N \times 75 \times 169$ f) Challenge: K = (3N - 24)(N - 28)

7. By looking at the prime factorization of a number, how can you determine whether if it is a perfect square or not? Explain:

8. Explain how you would multiply the following using the prime factorization. Do Not use a calculator: $15 \times 25 \times 35 \times 45 \times 16$

9. A building has 18 storeys above ground and 5 storeys below ground. If each storey is 5meters high, then how tall is the building?

10. In a magic square, the numbers in each row, column, and diagonal have the same sum. This is called the magic sum. What is the magic sum for this magic square?

2	3	- 2
-3	1	5
4	-1	0

- b) Multiply each integer in the square by -2. Is the result another magic square? If so, what is the new magic square?
- c) Create a magic square with a magic sum of -12.

11. Find the value of "N" in each equation:

a) $18,000 = N \times 2^3 \times 5^3 \times 6$ b) $80,640 = N \times 2^5 \times 12 \times 14$

12. Let a, b, c, d, and e be distinct integers such that: (6-a)(6-b)(6-c)(6-d)(6-e) = 45. What is the value of a+b+c+d+e?
